Image file formats are standardized means of organizing and storing images. This entry is about digital image formats used to store photographic and other images; (for disk-image file formats see Disk image). Image files are composed of either pixel or vector (geometric) data that are rasterized to pixels when displayed (with few exceptions) in a vector graphic display. The pixels that compose an image are ordered as a grid (columns and rows); each pixel consists of numbers representing magnitudes of brightness and colour.

Image file sizes

Image file size—expressed as the number of bytes—increases with the number of pixels composing an image, and the colour depth of the pixels. The greater the number of rows and columns, the greater the image resolution, and the larger the file. Also, each pixel of an image increases in size when its colour depth increases—an 8-bit pixel (1 byte) stores 256 colours, a 24-bit pixel (3 bytes) stores 16 million colors, the latter known as truecolor.

Image compression uses algorithms to decrease the size of a file. High resolution cameras produce large image files, ranging from hundreds of kilobytes to megabytes, per the camera's resolution and the image-storage format capacity. High resolution digital cameras record 8 megapixel (1MP = 1,000,000 pixels / 1 million) images, or more, in truecolor. For example, an image recorded by an 8 MP camera; since each pixel uses 3 bytes to record truecolor, the uncompressed image would occupy 24,000,000 bytes of memory—a great amount of digital storage for one image, given that cameras must record and store many images to be practical. Faced with large file sizes, both within the camera and a storage disc, image file formats were developed to store such large images. An overview of the major graphic file formats follows below.

Image file compression

There are two types of image file compression algorithms: lossless and lossy.

Lossless compression

Lossless compression algorithms reduce file size without losing image quality, though they are not compressed into as small a file as a lossy compression file. When image quality is valued above file size, lossless algorithms are typically chosen.

Lossy compression

Lossy compression algorithms take advantage of the inherent limitations of the human eye and discard invisible information. Most lossy compression algorithms allow for variable quality levels (compression) and as these levels are increased, file size is reduced. At the highest compression levels, image deterioration becomes noticeable as "compression artifacting". The images below demonstrate the noticeable artifacting of lossy compression algorithms; select the thumbnail image to view the full size version.

Major graphic file formats

There are many graphic file formats, if we include the proprietary types. The PNG, JPEG, and GIF formats are most often used to display images on the Internet. These graphic formats are listed and briefly described below, separated into the two main families of graphics: raster and vector.

Raster formats

These formats store images as bitmaps (also known as pixmaps). For a description of the technology aside from the format, see Raster graphics.

 JPEG

JPEG (Joint Photographic Experts Group) files are (in most cases) a lossy format; the DOS filename extension is JPG (other OS might use JPEG). Nearly every digital camera can save images in the JPEG format, which supports 8 bits per color (red, green, blue) for a 24-bit total, producing relatively small files. When not too great, the compression does not noticeably detract from the image's quality, but JPEG files suffer generational degradation when repeatedly edited and saved. Photographic images may be better stored in a lossless non-JPEG format if they will be re-edited, or if small "artifacts" (blemishes caused by the JPEG's compression algorithm) are unacceptable. The JPEG format also is used as the image compression algorithm in many Adobe PDF files.

TIFF

The TIFF (Tagged Image File Format) is a flexible format that normally saves 8 bits or 16 bits per color (red, green, blue) for 24-bit and 48-bit totals, respectively, using either the TIFF or the TIF filenames. The TIFF's flexibility is both blessing and curse, because no single reader reads every type of TIFF file. TIFFs are lossy and lossless; some offer relatively good lossless compression for bi-level (black&white) images. Some digital cameras can save in TIFF format, using the LZW compression algorithm for lossless storage. The TIFF image format is not widely supported by web browsers. TIFF remains widely accepted as a photograph file standard in the printing business. The TIFF can handle device-specific colour spaces, such as the CMYK defined by a particular set of printing press inks.

RAW

RAW refers to a family of raw image formats that are options available on some digital cameras. These formats usually use a lossless or nearly-lossless compression, and produce file sizes much smaller than the TIFF formats of full-size processed images from the same cameras. The raw formats are not standardized or documented, and differ among camera manufacturers. Many graphic programs and image editors may not accept some or all of them, and some older ones have been effectively orphaned already. Adobe's Digital Negative specification is an attempt at standardizing a raw image format to be used by cameras, or for archival storage of image data converted from proprietary raw image formats.

PNG

The PNG (Portable Network Graphics) file format was created as the free, open-source successor to the GIF. The PNG file format supports truecolor (16 million colours) while the GIF supports only 256 colours. The PNG file excels when the image has large, uniformly coloured areas. The lossless PNG format is best suited for editing pictures, and the lossy formats, like JPG, are best for the final distribution of photographic images, because JPG files are smaller than PNG files. Many older browsers currently do not support the PNG file format, however, with Internet Explorer 7, all contemporary web browsers now support all common uses of the PNG format, including full 8-bit translucency (Internet Explorer 7 may display odd colors on translucent images ONLY when combined with IE's opacity filter). The Adam7-interlacing allows an early preview, even when only a small percentage of the image data has been transmitted.

 GIF

GIF (Graphics Interchange Format) is limited to an 8-bit palette, or 256 colors. This makes the GIF format suitable for storing graphics with relatively few colors such as simple diagrams, shapes, logos and cartoon style images. The GIF format supports animation and is still widely used to provide image animation effects. It also uses a lossless compression that is more effective when large areas have a single color, and ineffective for detailed images or dithered images.

BMP

The BMP file format (Windows bitmap) handles graphics files within the Microsoft Windows OS. Typically, BMP files are uncompressed, hence they are large; the advantage is their simplicity, wide acceptance, and use in Windows programs.

Vector formats

See also: Vector graphics

As opposed to the raster image formats above (where the data describes the characteristics of each individual pixel), vector image formats contain a geometric description which can be rendered smoothly at any desired display size.

Vector file formats can contain bitmap data as well. 3D graphic file formats are technically vector formats with pixel data texture mapping on the surface of a vector virtual object, warped to match the angle of the viewing perspective.

At some point, all vector graphics must be rasterized in order to be displayed on digital monitors. However, vector images can be displayed with analog CRT technology such as that used in some electronic test equipment, medical monitors, radar displays, laser shows and early video games. Plotters are printers that use vector data rather than pixel data to draw graphics.